Caffe to tensorflow Edit

convert Caffe berkeley vision models to tensorflow, which allows easier python based neural networks. , linked from David Silver Three front ends available for tensorflow

resources Edit A curated list of TensorFlow experiments, libraries, and projects.

Yolo Edit

Yolo Detecting vehicles in a video stream is an object detection problem. An object detection problem can be approached as either a classification problem or a regression problem. As a classification problem, the image are divided into small patches, each of which will be run through a classifier to determine whether there are objects in the patch. Then the bounding boxes will be assigned to locate around patches that are classified with high probability of present of an object. In the regression approach, the whole image will be run through a convolutional neural network to directly generate one or more bounding boxes for objects in the images. You only look once, but you reimplement neural nets over and over again. YAD2K is a 90% Keras/10% Tensorflow implementation of YOLO_v2. Original paper: YOLO9000: Better, Faster, Stronger by Joseph Redmond and Ali Farhadi. , , Kernelized correlation filters. Both KCF and DCF outperform top-ranking trackers such as Struck or TLD on a 50 videos benchmark, despite running at hundreds of frames-per-second, and being implemented in a few lines of code. To encourage further developments, our tracking framework was made open-source. is the python port, but C++ is also available. This a linux port of the original code provided by Olga Barinova from the Vision Group at Moscow State University, 2010. Please visit the project website for more details. This derivative work follows the Microsoft Research Shared Source license, which allows only non-comercial usage.(meaning commercial companies will have to pay millions to use it in a commercial product) . The FSF Stallman newspeak(GPL and BSD) on GPL doesn't make it clear that the copyright holders can arbitrarily wave this non commercial restriction if you pay them lots of money. Pedestrians detection using Hough forests is a derivative work from o detect multiple objects of interest, the methods based on Hough transform use non-maxima supression or mode seeking in order to locate and to distinguish peaks in Hough images. Such postprocessing requires tuning of extra parameters and is often fragile, especially when objects of interest tend to be closely located. In the paper, we develop a new probabilistic framework that is in many ways related to Hough transform, sharing its simplicity and wide applicability. At the same time, the framework bypasses the problem of multiple peaks identification in Hough images, and permits detection of multiple objects without invoking nonmaximum suppression heuristics. As a result, the experiments demonstrate a significant improvement in detection accuracy both for the classical task of straight line detection and for a more modern category-level (pedestrian) detection problem.

SSD Edit single shot multibox detector. Provides comparable accuracy to explicit region proposal methods (such as Faster R-CNN) but is much faster and thus better suited for real-time applications.

paper Edit We reimplement YOLO, a fast, accurate object detector, in TensorFlow. To perform inference, we leverage weights that were trained for over one week on GPUs using Ima- geNet data, a publicly-available dataset containing several million natural images. We demonstrate the ability to repro- duce detections comparable with the original implementa- tion. We learn the parameters of the network and compare mean average precision computed from pre-trained network parameters. Furthermore, we propose a post-processing scheme to perform real-time object tracking in live video.

Redmon et al. ’s work is especially notable for two major strengths. First, their model solves in an end-to-end fashion what was considered in the not-far-distant past two separate problems in computer vision literature: object detection and object classification. Second, their model presents an efficient solution to an enduring problem in computer vision: how does one go about producing an arbitrary number of detections in an image while using fixed dimensional input, output, and labels? YOLO avoids computationally expensive region proposal steps that detectors like Fast R-CNN[4] and Faster-RCNN[14] require. However, since the time of YOLO’s publication, newer models such as Single-Shot Multi-Box Detectors [9] seem to offer improvement in mAP with reduced GPU inference time [6]. YOLO uses grid cells as anchors to detections, much like Faster R-CNN and Multi-Box.

tutorials Edit Google developer channel. theano tuorial. see basic tensorflow tutorial Siraj Raval

Martin Gorner Edit,

links Edit

  • Pytorch
  • Nervanasys Video activity learning, use neural net to detect a carjacking for example or any other activity.

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.